Dataviz – the Art/Skill Cocktail


In the ever-growing universe of dry academic texts, impressive and efficient graphics are quite rare. Driven by widespread software legacy issues and mostly outdated limitations imposed by traditional scientific publishers, researchers often consider producing high quality graphics as a peripheral optional task – “if time allows” (spoiler: it won’t). Yet, modern tools place data visualization in the focus of research workflows when it comes to conveying the results. Hence, the ability to turn a large dataset into an insightful visualization is an increasingly valuable skill in academia.

The course aims to empower the participants with the flexibility that the R+tidyverse framework gives to visualize data (the practical examples mostly use demographic data). The course covers some aspects of data visualization theory and best/worst practice examples, but it’s primarily practice oriented including live coding sessions and short lecture/showcase parts.

Practical coding sessions start from basic introduction to tidy data manipulation and ggplot2 basics. Next, practical examples cover the creation of certain most useful types of plots. Important data visualization choices and caveats are discussed along the way. Special attention is devoted to producing geographical maps, which are no longer the luxury of professional cartographers but have turned, with the help of R, into yet another data visualization type. Going beyond ggplot2, the course presents an introduction to interactive data visualization.

Course BlueSky account:




Day 2: TUNE-UP


Day 4: MAPS

Day 5: ROCK

Links to submit assignments

Useful links

Previous runs of the course

The current version is updated for run at Leverhulme Centre for Demographic Science in September 2022.

This course was offered several times in past: